FIND YOUR SUPPLEMENT
Bone, joint & muscle
Collagen
Children's Health
Fish Oils & Omega
Gut Health & Digestion
Greens & Superfoods
Gummies & Chewables
Hair, Skin And Nails
Herbal Supplements
Immune Support
Men's health
Magnesium
Minerals A-Z
Multivitamins
Practitioner
Pre & Probiotics
Sleep, Stress & Mood
Women's health
Vitamins A-Z
Prescription
Brands
Catalogue
Clearance
What do diabetes, thyroid disease, and irregular menstruation have in common? They're all conditions of the endocrine system. You've heard of the nervous system, cardiovascular system, and the gastrointestinal system. Easy – the nervous system involves nerves, the cardiovascular system deals with blood and breathing, and the gastrointestinal system is all about digestion.
But what does the endocrine system do?
It does a lot. In fact, research breakthroughs are suggesting that the endocrine system may be far more important than we once thought – it may be the most important body system of all [1].
The endocrine system is made of glands and organs that produce and/or secrete hormones into the blood stream. Hormones are involved in almost all body functions, including growth, sexual function, sleep, mood, and more.
The major glands and organs of the endocrine system are:
All of these glands and organs secrete hormones which travel through the blood stream and affect the activity of particular cells throughout the body.
While a nervous system message zips from one body part to another, the endocrine system prefers to keep things slow and steady. The effects of hormones on target cells can take effect hours to weeks after being released into the blood stream, and they also stick around a lot longer than nerve impulses – this means hormones can have a stronger, longer-lasting effects [1].
Hormones can also carry a mass message to multiple cells and even multiple body parts at once – for example, every cell in the body depends on thyroid hormones to regulate their metabolism (how fast they convert oxygen and calories into energy) [4].
The study of the endocrine system is expanding rapidly, due to the ongoing discovery of new hormones and their effects on the body.
Because hormones are so powerful and have a long-lasting effect, the endocrine system strives to keep them at an ideal level throughout the body and blood. It does this through feedback loops.
Endocrine feedback loops are designed to prevent overdosing or under-dosing the body with hormones.
Some feedback loops involve multiple glands and organs, and inter-connect with other feedback loops and hormone cascades [4]. Most notably are the HPA / HPG / HPT axes.
The major control centre of the endocrine system is located at the base of the brain. Here, the hypothalamus and pituitary glands initiate some of the most important hormone cascades throughout the body.
These are called the “HP-axes” [3] [4].
H = hypothalamus
P = pituitary
The last letter of the acronym refers to the target tissue:
A = adrenals (to secrete stress hormones)
G = gonads (to secrete sex hormones)
T = thyroid (to secrete metabolism hormones)
When the hypothalamus detects abnormal levels of hormones in the blood, it stimulates the pituitary to send a hormone to the target tissue.
In the HPT axis, for example, the hypothalamus may detect low levels of thyroid hormone in the body. It will then secrete a hormone that is picked up by the nearby pituitary gland. When the pituitary detects the hormone, it responds by increasing its release of thyroid stimulating hormone (TSH). As the name suggests, this hormone stimulates the thyroid gland (located in the throat) to produce and secrete more thyroid hormones. Thyroid hormones circulate throughout the body and act on every cell in the body. Once the hypothalamus detects that blood levels of thyroid hormone are back to normal, it will stop stimulating the pituitary gland and the loop will stop.
The HPA axis involves the regulation of stress hormones from the adrenal glands. When stress is high, the hypothalamus and pituitary glands stimulate the adrenals to produce hormones like adrenaline and cortisol [4].
The HPG axis controls the regulation of sex hormones, including oestrogen and testosterone. The hypothalamus stimulates the pituitary to secrete luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which send signals to the gonads to secrete sex hormones. If this axis is out of balance, then menstruation may be irregular, PMS may be heightened, or fertility could be compromised.
Naturopathic medicine believes that these axes work together, and an over-active axis will throw the other two out of balance. Because we're wired for survival, the HPA axis often takes precedence, causing disruption to thyroid and sex hormones. It's often the case that stress (HPA axis) goes hand-in-hand with weight gain or metabolism issues (HPT axis), and fertility, menstrual or menopause problems (HPG axis).
Endocrine disorders are some of the most common in the world [2]:
Not all hormonal imbalances are due to a disease – stress, infections, and electrolyte imbalances all cause hormone fluctuation from the endocrine system [2].
Indole-3-carbinol (I3C) is a chemical found in brassica vegetables (like brussels sprouts, broccoli and cauliflower). I3C helps to regulate the endocrine system by boosting elimination of used-up hormones like oestrogen. It is particularly effective in diabetes where it acts as an antioxidant to protect the body against damage caused by high blood glucose [5] [6].
This adaptogenic herb has been used for hundreds of years in Traditional Chinese Medicine for its endocrine-supporting actions. Rehmannia contains glycosides that help the endocrine system to produce, secrete and react to hormones that reduce symptoms of menopause, high blood pressure, and may help to treat polycystic ovarian syndrome [7] [8].
CAUTION: Do not use during pregnancy or breastfeeding.
Zinc is essential for the release of hormones from the pituitary gland and helps to regulate sex hormones. Supplementing with zinc has been shown to normalise testosterone levels in men and women [9]. It is also used in type 2 diabetes where it helps break down carbohydrates, and reduces cell desensitisation to insulin [10].
Healthy fats are needed for the production and action of every hormone. Supplementing with omega-3 fatty acids may improve fertility outcomes [11], reduce menstrual irregularities and PMS [12], stabilise thyroid hormones [13], and improve insulin action in T2DM [14].